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1. INTRODUCTION

In this paper, we deal with certain cryptographic functions, called ‘blockci-
phers’, and introduce certain weaknesses that blockciphers might have, named
‘linear structures.” It is explained that blockciphers can be broken more easily
if they possess linear structures. In particular, we pay attention to the Data
Encryption Standard, which is a blockcipher used in the USA as a standard
for the encryption of data for civil use. This paper will also appear in a some-
what different form 1n [8].

In the first part of the introduction, we introduce some terminology to make
the paper more easily readable for the non-specialist. In the meanwhile we
discuss some of the history of our subject. In the second part of the introduc-
tion, we give a brief overview of the contents of the paper.

1.1. History and terminology

Mathematically speaking, a blockcipher is a mapping F: {0,1}"X<{0,1}*
— {0,1}" such that for each k in {0,1}*, the mapping F(,k): {0,1}”
— {0,1}™ is one-to-one. If ¢=F(p,k) then p, k and ¢ are called the plaintext,
key and ciphertext, respectively, and the coordinates of p, k and ¢ are called
plaintext bits, key bits and ciphertext bits. m and k are called the message
length and key length, respectively of F. Blockciphers are mostly used as
secret key cryptosystems. When two parties A and B want to communicate

1. This research was supported by the Netherlands Organization for the Advancement of Pure
Research (Z.W.0.), and was carried out at the Centrum voor Wiskunde en Informatica.
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over an insecure channel, they agree in advance about a key k that 1s kept
secret from outsiders. Whenever A wants to send a message to B, consisting of
Z€ros or ones, then A partitions that message into blocks of length m, encrypts

ying F(.,k) to it, and sends the encrypted

are more secure ways to encryp
which are not discussed here.)
we assume that the mapping F 1s public. Thus, the communication between
A and B cannot be secure if an adverse cryptanalist is able to find the key A
and B agreed upon. The methods by which a cryptanalist could try to find the
key used by A and B are usually divided into three classes, depending on the
information that the cryptanalist can obtain.

Ciphertext only attacks. The cryptanalist tries to find the key by using some
ciphertexts (which he may have obtained by eavesdropping the communication
between A and B over the insecure channel) and some statistical properties of
the corresponding plaintexts (e.g. when the plaintext is English text).

Known plaintext attacks. 1f the cryptanalist intercepts some ciphertexts ¢, and
some of the corresponding plaintexts p become public after some time, then he
could try to find the unknown key k by solving k from the equations
F(p,k)=c. A trivial known plaintext attack is ‘exhaustive key search’. the
cryptanalist takes some plaintext p of which he knows the corresponding
ciphertext ¢ and tries all keys k until he finds one with F(p,k)=c.

Chosen plaintext attacks. The cryptanalist is able to obtain the ciphertexts

corresponding to special plaintexts chosen by himself, and may use these
plaintexts and ciphertexts to search for the key.

Probably the best known blockcipher is the NBS Data Encryption Standard
(DES), with message length 64 and key length 56. DES is the iteration of six-
teen ‘sumple’ blockciphers (rounds). These blockciphers are all the same,
except that they use different ‘subkeys’ of length 48 which are extracted from
the key of length 56 of the whole DES. Each round of DES is built up from
bit permutations’ that permute the bits of the input, ‘permuted choices’ that
select some of the bits of the input and permute the selected bits in some
order, an ‘extension’, that makes the input longer by duplicating some of its
bits, and ‘S-boxes’ that map blocks of six bits onto blocks of four bits.
Further, each round of DES is ‘self-inverse’, so that DES-decryptions can be
done by performing the sixteen rounds in opposite order. For the precise
description of DES we refer to [13]. The DES-algorithm was developed by
IBM and published in 1975. At the advice of the US National Security
Agency (NSA), the algorithm was accepted i 1977 as a US standard for the
encryption of data for civil use by the US National Bureau of Standards
(NBS). Although DES itself was published in full detail, its design criteria
were kept secret, at the instigation of NSA. This led to a considerable
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d many facts about the S-boxes in

P d by a one, and each one by a Z€ro. [ELLMAN et
. HO} pointed out that blockc:1p ers with such a con nentation property
are vumembie to a chosen plaintext attack twice as fast as exhaustive key
\lthough D ES was pubhs ied more than twelve years ago, still no
own plain known (1n the open | temture) that 1s faster
Ehan exhaustive key search Hn 1976, Di1FrFIE and H AN [6,7] discussed the
possibility of building a ‘special purpose machine’ by which one could do an
exhaustive search on all 2°® keys in one day Such a machine would consist of
one million ‘DES-chips’. They expected chip-technology to evolve so rapldly
that within ten years (in 1986!) it would be possible to build such a machine
for no more than about $20,000,000. It seems that it i1s not yet possible to
build a machine as proposed by Diffie and Hellman for such a low price. But
obviously 1t 1s possible to construct a cheaper machine that needs more time to
search for the key.
To ascertain that a particular blockcipher 1s secure, one has to find out
which weaknesses would make that blockcipher vulnerable to fast known- or
chosen plaintext attacks, and to convince one-self that the blockcipher does

not have such weaknesses. Dangerous weaknesses are ‘bit independencies’

some of the ciphertext bits are independent of some of the plaintext bits and
key Dbits, 1.e. these ciphertext bits can be expressed as functions having only the
other plaintext bits and key bits as their arguments. If we denote that subset
of ciphertext bits by Be, and the subsets of plaintext bits and key bits on

which they depend by A4 ,p and A,k, respectively, then there 1s a mapping F
such that

Bc = F(A4,p,A,k) for all p (1)

nknown key k can be computed from a given plaintext p and a
correspondm_g ciphertext ¢ by trying all k in the image of 4, until one gets
k has been found, searching exhaustively through all

k with 4,k=k. This known plaintext attack i1s much faster than exhaustive
key search. MEYER [12] pointed out that truncations of DES that are the itera-
tion of less than five rounds do have bit independencies, and he argued that

bit independencies do not appear in blockciphers with at least five rounds of
DES; see also the table on p. 265 of [11].

In general, a blockcipher F is also vulnerable to a known plaintext attack
much faster than exhaustive key search if it is easy to find any four mappings

F, A,, A, and B satisfying (1), such that the images under 4, and A4, are
strings of zeros or omnes of length smaller than the message length and key

length, respectively, the computation time of F is about the same as that of F,

k,c with ¢=F(p,k).
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of F. Such a tuple of mappin alled a factoriza

al, it 1s a very complicated problem to find factorizations of a given
kcipher, or to show that there are none. Most of the research that has
been done so far restricts itself to linear factorizations, i.e. if we consider {0,1)
as the fimte field [, and {0,1}™ and {0,1 }¥ as vector spaces over [,, then 4,,
A, and B (but not necessa: ' F) are linear mapings on these vectors PacCes.
To be consistent with the literature, we call the triple (4,,4,,B) a partial
linearity and F a linear factor of F, although F itself need not be linear.

REEDS and MANFERDELLI [15] were the first to look for linear factorizations
of DES other than bit independencies. They proved that DES has no “per
round lin aking this means that DES has no partial
linearity that can be composed of the same partial linearities in each round of

CHAUM and EVERTSE [2] extended the notion of a per round linear factor to
that of a ‘sequence of linear factors, and proved that DES has no partial
Linearity caused by such a sequence. Essentially, this means that DES has no
partial hinearities built up from possibly different partial linearities in the
rounds of DES. Chaum and Evertse also analysed blockciphers composed of a
reduced number of rounds of DES. They proved that blockciphers with at
least five rounds of DES do not have partial linearities caused by sequences of
linear factors. This cannot be improved since the bit independencies in DES-
truncations of less than five rounds discovered by Meyer come from sequences
of hnear factors. We remark that no method is known for detecting partial
linearities in DES that are not built up from partial linearities in the rounds.

In the present paper, the notion of partial linearity is extended to that of
inear structures’. Apart from the partial linearities, the class of linear struc-
tures contains structures like the complementation property of DES mentioned
above. As before, consider {0,1} as the field F,. By F%' we denote the vector
space of m-tuples with entries in F, and by + vector addition in this space;
this vector addition is just coordinatewise addition modulo 2 (otherwise called
‘bitwise exclusive-or’). In general, a linear structure of a mapping S: F5 — [}
1s a pair (V;B), where “Vis a linear subspace of F4 and B is a linear mapping

with domain F} (both with respect to [Fj), such that there is a mapping i
defined on V' with

BS(x+X9) = BS(x)+y(xg) for each x in F¥%, x, in (2)

Thus, if (,B) is a linear structure of a blockcipher with message length m and
key length k, then “Vis a linear subspace of F¥ XF ’2‘ and B is defined on F%.
Informally, (2) says that when the input x is changed by adding some vector in

"V to it, then the resulting change in the output BS(x) depends only on the
change 1n x, and not on x itself.
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1.2. Contents of the paper
In Section 2 we introduce some notation and n
about blockciphers.
En Secﬂon 3 we explain wh
known- or chosen plain

ention some prelin

search.

We are particularly - in linear structures of product ciphers. These
are blockciphers con posed of ‘simple’ blockciphers (‘rounds’). In Section 4 we
explain inear structures of product ciphers can be constructed from b
structures in their rounds; linear structures constructed in this way are said to
be recursive over the rounds. Recursive linear structures in product ciphers are
generalisations of the sequences of linear factors introduced in [2]. In many
situations, the linear structures of the rounds, and consequently the recursive
inear structures of the product cipher, can be found quite easﬂy, however 1t 18
often a hard problem to decide whether a product cipher has a linear structure
not recursive over its rounds that enables known- or chosen plaintext attacks
faster than exhaustive key search.

In Section 5 we describe DES in more detail, and state Theorem 1: that
blockciphers which are the product of at least seven consecutive rounds of
DES do not have any recursive linear structure other than the complementa-
tion property mentioned above.

In Section 6 we deal with DES-like ciphers. These are product ciphers of a
similar structure as DES composed of S-boxes and linear mappings. It 1s
shown that the linear structures of a round of a DES-like cipher can be
expressed easily in terms of linear structures of its S-boxes. It is shown that
DES-like ciphers have a recursive linear structure analogous to the complemen-
tation property of DES. In Section 6 we state and prove Theorem 2: that any
DES-like cipher satisfying certain easily verifiable conditions has apart from 1ts
complementation property no linear structures that are recursive over 1Its
rounds. Further, Theorem 1 1s derived from Theorem 2.

In Section 7 we explain briefly that a DES-like cipher might be vulnerable
to known- or chosen plaintext attacks faster than exhaustive key search it some
of its S-boxes can be changed into S-boxes with linear structures by appropri-
ately changing some of their outputs.

2. NOTATION AND DEFINITIONS

In this section we introduce some notation to be used in the remainder of this
paper, and mention some preliminary facts about linear structures in blockci-
phers.

When using notions from linear algebra such as vector spaces, hinear map-
pings, etc., it is assumed that the underlying field of scalars is the field of two
elements F,. For every vector space we consider, we denote the addition
operation by + and, if confusion is not likely to arise, the zero vector by 0.
F5' denotes the vector space consisting of all strings of the type a;...a, with
ai,...,a, €F,, in which the addition of two strings is just componentwise [F;-
addition. Strings in F5 are mostly represented by bold face characters a, b,
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= denotes the string of m zeros and 1,, the string of m ones. Elements

artesian product F5' X...X[F3" are denoted by tuples (xi,...,X,), where
for i =1,...,r. We identify the tuple (x,,...,x,) with the concatenation
of the strings represented by x;,...,X,. [x] denotes the vector space generated

by x. If V, (a€Ad) are (linear) subspaces of the same vector space, then ®A%‘

={ZpeaXq: X, €YV, } denotes the smallest vector space containing each °V,.
Thus, @ [x,] denotes the vector space generated by the set of vectors

aec A

{x4:0a€A}. For any linear mapping A with domain [F7 we put
ker(A)={xeF5:Ax=0} and im(4)={Ax:xeF%}. A linear mapping 1s said
to be zrivial if it maps every vector 1n 1ts domain onto 0.

We recall that a blockcipher 1s a mapping

F: F? XF5 >F7

(where F%' and 5 are the message space and key space, respectively) such that
for each k in F5, the mapping

Fy := F(- k): FF >F7 (3)

is invertible. The set of blockciphers with message space F5' and key space [F5
can be endowed with a group operation. The product F=Fg - - - Fy of the
blockciphers Fi,...,Fr: F5 XF5 — F¥ is defined by

Fy(p) = Frx - - F1x(p) (4)

(composition of mappings F;y =F;(.,k)) for peF$ and keF5. F,,..,Fg are
called the rounds of F. The inverse F~! of the blockcipher F: F§ XF4 — F7

is defined by F~'(p,k)= {Fyx}™ l(p), where {Fy ) ~1 denotes the inverse of Fj
for each k in F¥.

We recall the following

DEFINITION. A linear structure of a blockcipher F: F% XF5 ->F% is a pair
(V;B), where Vis a subspace of F5' X[F5 and B is a linear mapping on F¥, for
which there is a mapping ¢ on “V such that

for all (pg,ko)eV, peF¥% and keFX.
A linear structure (Y, B) is called trivial if either B is trivial or if V=[(0,,,0,)].

(3)

XEMARK 1. Every blockcipher has trivial linear structures.

MARK 2. The mapping ¢ in (5) must be linear on V. Indeed, let (pg,ko),
(P1,k;)e™V. Then (5) implies that

J(po +p1, K BF(p; +po, k; +ko)+BF(0,,,0,)
BF(p; +po, k) +ko)+ BF(p,.k;)+BF(p;,k,)+ BF(C
‘lb( D0 kO) + ‘sb(pl > kl )

1

rnt>

|
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have

(6)
On the other hand, if V and 9 are subspaces of F XF and P”, respectively,
satlsfymg (6), then each pair (V,B) for which B ]
ker(B) °0f 1s a linear structure of F.

We now give a few examples of linear structures.

XAMPLE l: COMPLEMENTATION PROPERTY OF DES. The blockc1pher DES,
with message space F$* and key space F3°, has the pmpeny that DES(p+ 144,
K+ 156)=DES(p,k) + 144 for every plamtext p and key ----- Hence if B 1s the
identity, then ([(1¢4,15¢)],B) is a linear tructure of 1 ES In (5) we can take
for ¢ the mapping defined by Y(0g4,0s¢) =044 and Y(1gq, 1) = 1¢4.

EXAMPLE 2: PARTIAL LINEARITY. A blockcipher F is said to have partial
linearity if there are a triple of linear mappings (4,,4,,B) and a mapping F
such that BF(p,k)=F(4,p,4A,k) for all plaintexts p and keys k. Define

V=ker(A )X ker(A,); then (;B) is a linear structure of F. The function ¥ in
(5) 1s 1dentically zero.

3. CRYPTANALYTIC SIGNIFICANCE OF LINEAR STRUCTURES
In this section we describe a known- and a chosen plaintext attack, which are

both based on the existence of linear structures. In these attacks, the following
fact 1s used:

LEMMA 1. Let F: F?XF%5 >F% be a blockcipher and ("V,B) a linear structure
of F. Further, let A be a linear mapping on F5 XF5 with ker(A)=. Then
there exist a linear mapping C: F3 XF5 — im(B) and a (not necessarily linear)

mapping F:. im(A) — im(B), both easily computable from F, A and B, such that
BF(p,k F p,k) for all p in F7', k in F é‘

PROOF. Let ¢ be the function on V, defined by (5) in Section 2. It follows
from Remark 2 of Section 2 that i is linear on ker(A4); therefore, it is easy to
compute from F, 4 and B. Let A~ be a pseudo-inverse of A4, that is a linear
mapping 4 " : im(A)— F3 XF5 such that A4 is the identity on im(4). Such a
pseudo-inverse exists and can be easily computed from A. Let
D: F5XF5—>F7XF5 be the linear  mapping  defined by
D (p.k)=(p,k) +4 A (p,k). Then D(p,k)cker(4) for all peF¥ and keF5. Put
F=BFA", C=yD. Then F and C are well-defined mappings that are easily
computable from F, 4 and B, and C is linear. Let p and k be arbitrary ele-
ments of F¥ and [F%, respectively and put (pg,.kg)=D (p,k). Then (5) and the
fact that (pg,ko)eker(4) imply that
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, and 4, C and F are mappings satisfying the conditions of
mma 1. Define the linear mappings

known pl aintext attack where it 1s assumed that O<m:=dimension
ker(A,)<k; and a chosen plaintext attack in which ker(4;) is supposed to
have dimension 0.

A known plaintext attack. Suppose that a cryptanalist has a plaintext-
ciphertext pair (p,c) and wants to find the secret key k with F(p,k)=c. In
order to find Kk, he proceeds as follows:

(1) he runs through all values k in im(4,) and checks for each
tem of linear equations

[

k, if the sys-

Azk:i;

. N in keF% (7)
Crk = Bet+F(A,p+k)+C,p

s soluble (the costs of this are approximately those of a computation of F,
if we suppose that F is much more ‘complicated’ than a linear mapping);
it follows at once from Lemma 1 that the unknown key k must satisfy (7);

(1) for each k in im(4,) for which (7) is soluble, the cryptanalist checks for
each solution k of (7) if F(p,k)=c.

Supposing that our cryptanalist finds L values of k in (i), and that the null
space of the linear mapping ks (4,k,C,k) has dimension n;=<n, he will find
the key after about 2* 7"+ X2" encryptions. In general, this number of
encryptions is smaller than that needed in exhaustive key search, which is 2*.

REMARK 1. If the cryptanalist possesses more plaintext-ciphertext pairs for
that same key, then he can reduce the number of values L of k that have to be
considered in phase (i1) as follows: whenever the cryptanalist finds a k for

which (7) is soluble, he considers also systems of type (7) with the same k but
with other plaintext-ciphertext pairs instead of p and ¢, and checks if all sys-
tems under consideration have a common solution; if not, the cryptanalist
rejects k. If we assume that our blockcipher is randomly chosen from all
blockciphers with linear structure (°;B), then the expected number L of k’s
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1 ; 1if the number of these pairs 1s
| value of L drops to 1. This heunistic argu-
! , Section 2 for the special case that

E at have to be consa -

gible compared with the gain

the cryptan list must d

phase (1) 1S negl

_ lar
p and

“MARK [f F~! has a linear structure, then F is vulnerable to a sin
Known pl aintext attack as described above, in which F 1 re places F and
¢ are interchanged.

REMARK 3. It 1s possible to use lnear structures in ‘meet-in-the-middle
auacks as described in [2]. Meet-in-the-middle attacks are known plaintext
attacks applicable to product ciphers F=H G where G, H: F? XF4 - F% are
blockciphers. Suppose that a cryptanahst has a plaintext- ciphertext pair (p,c).
Instead of trying to solve the unknown key d1rect1y from c=F(p he could

attempt to solve k from

antageous to use (8) if G and H

: ~! have non-trivial linear struc-
tures that ‘fit’ together, whereas the product HG has no non-trivial linear struc-
We do not work this out here. CHAUM and EVERTSE [2] discovered that
ain product ciphers composed of less than eight rounds of DES are vulner-
able to meet-in-the-middle-attacks faster than exhaustive key search.

EXAMPLE 1: PARTIAL LINEARITY. Let 4,,4,,B be linear mappings such that
BF (p,k)=F(Ap,A7k) for CVery p laintext p and key k, and SuUppose that
ker(A,) has dimension >0. In [15] and [2] a known plaintext attack based on
partial linearity was described that is faster than exhaustive key search. That
attack is the same as the attack descrnibed above, with C; and C, being trivial.

A chosen plaintext attack. Suppose that a cryptanalist has N different
aintext-ciphertext pairs, (p;,c€;),...,(Py,Cn), say, and wants to find the
nknown key k for which F(p;,k)=cy,....,F(py.K)=cy. Assume that py,....,p

have the property that there are ky,....ky €F5 such that

9)

Note that plaintexts p;,...,py with this property exist if and only if “V=ker(4)
has cardinality at least N. In order to find k, the cryptanalist proceeds as fol-
lows: he chooses keys k’ from F5 at random and checks for each k' if

C,(k'+k, +k;) = Bg, + FA (p1, kK)+Cp; (10)

holds for some i in {1,...,N}. If this is the case, the cryptanalist concludes that
k=] His motivation for this is, that by (9),

k’+K; +k; must be the proper key.
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'hus for the costs of only a single €encr)
keys. Therefore, the expected running ti
smaller than that of exhaustive key search.

REMARK [he cl aintext attack can aﬁso be used when 0<<dimension
ker(A )<k bm in that case its beneﬁt is much less than that of the kn

plaintext attack described above. However, it is possible to combine both
attacks described above into a chosen plaintext attack that is somewhat faster
than the known pla:

intext attack described above.

FXAMPLE 2: COMPLEMENTATION PROPERTY OF DES. HEeLLMAN et al. ([10], Sec-
tion III) showed that DES is vulnerable to a chosen plaintext attack, based on
the complementatlon property, which is twice as fast as exhaustive key search.
That attack is essentially the chosen pla.:mtext attack described above, apphed
to DES and two plamtext-01phertext pairs (py,¢;), (p2,¢;) with p, =p 4.
Note that any two such pairs satisfy (9) with N =2, where A4 is a hnear map-—
ping with ker(A)=[1¢4,15¢], and k; and k, are any two keys with k; =k + 1.

EXAMPLE 3: MULTIPLE COMPLEMENTATION PROPERTIES. Let f: F7 —F7 be a
one-to-one function such that both f and its inverse are easy to compute, and
let F~: F§' XF% —F% be the blockcipher defined by F~(p,k)=f(p+k)+k. Let
V= {(p,k)elF""XIF’z": p=Kk} and let B be the identity; then (‘V,B) is a linear
structure of F. Lemma 1 holds with F=f, 4: (p,k)-p+k and C: (p k) - k.
Any N different plaintexts py,...,py of F~ satisfy condition (9) with k; =p; for
{=1,..,N. Hence if a cryptanalist knows N arbitrary plamtext-01phertext pa_u*s
of F’ , corresponding to the same unknown key, then he can find that key
about N times faster than with exhaustive search by using the chosen plaintext

attack described above. Note that for the blockcipher F*, this chosen plain-
text attack 1s in fact a known plaintext attack.

4. LINEAR STRUCTURES IN PRODUCT CIPHERS

Let F,,...,Fr: FP XF5 ->F% be blockciphers, and let F=Fg - - - F; be their
product. We describe how linear structures of F can be constructed from
linear structures in F,...,Fgr. To this end, we introduce the so-called T-spaces
and U-spaces.

For any blockcipher F: F% XF5 —F%, and any subspace <V of F% X[F¥%, we
define the spaces

I'(F,V) =
FEW = @ [F@+po, ktko)+FpK)k)l

(p.k)eF7 XF)

U(F,YV) = m%w LE(P+po, kt+ko)+ F(p,k)+ F(py, ko) + F(0,,,01)]
(p.k)eF T XF}
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e U-spaces of its rounds;
However, T-spaces can be comp

space of Fp < Fk. Then

T'(F,%) =

for i =2,...,t. It 1s easy to check that for each i, a
belongs to U(F,V) X[0,]. This proves Lemma 2. []

a shows how T-spaces and U-spaces of the

[he next, rather techmical, lemm
rounds can be used to construct linear structures of the product cipher, pro-

vided that these T-spaces and U-spaces satisfy some recurrence relation.

LEMMA 3. Let F,,...,Fg: F3 XF5 —FY5 be blockciphers and put F=Fy - - - F.
Suppose that Y, C\ﬁ ..., Vg are subspaces of F5' X F%, and U, y,...,Wg are sub-

spaces of F5', such that
\ for i=1,...,R } (14)

CV; 2 T(E ) CVI — 1 ):
WX 2 T(EW—1 X[ODD (U(E,% 1) X0

Then U(F, V) CUWg.
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DEFINITION. Let F,,.. Fr: FXF5—F% be blockciphers and put
F=Fg - F;. A linear structure (V,B) of F is called recursive over Fi,.. Fg
if there are subsaces V,..., Vg of F5' XF3 and Uy,...,Wg of FF for which (14)

na 3 motivate the following:

REMARK 1. If a product cipher can be decomposed into rounds in
ways, then it 1s possible that a linear structure of that product cipher is recur-

sive over the rounds of the first decomposition but not over the rounds of the
second decomposition.

REMARK 2. If the rounds of some product cipher are such that their linear
structures are easy to find, then in general, the linear structures of that product
cipher which are recursive over its rounds are also easy to detect. However,
one cannot exclude that a product cipher has linear structures that are not

recursive over its rounds, and it might be a very difficult problem to find out if
such non-recursive linear structures exist.

MMA 3. In the proof of Lemma 3 we need the following facts: for
any two blockciphers G, H: FJ' XF% — F% we have

I'(HG,Y) C T(H,T(G,V)) (15)
and
UHG,\)X[0] C T(H,U(G, W)X [0S {U(H,T(G,¥)X[0]}.

We first prove (15) Let peF7, keF5 and (py, ko) eV, and put p; =

K+ko)+H(p1,k), ko)eT(H,T(G,V))

This proves (15)

We now prove (16) Put ql

where
a = H(p +q+q, k+ko)+H(p +aq, k+ko) and (a,0,) T(H, U(G, ¥) X [04]).

b = H(p) +q, k+ko)+H(p,k)+H(q,ko) +H(0,,,0,) e UH, T(G,Y)),

¢ = H(p, + @,k +ko)+H(py, ko) + H(qr, ko) + H (0,,,0,) € UH, T(G,V)).

Thus proves (16).
Let F=F; --- F fori=1,..,R. We prove by induction on i that
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%), W,DODUWFH, ) fori=1,...,R, (17)

(17) 1s trivially true for i =1. Suppose that (17)
=F, and V=%;. First we have, by (14), the

induction hypothesis and

VOT(F, V- )T, TF"D N)YDTFY, ),

it follows from

(14), the induction hypothesis and (16), that
Wy X [0 ] 2 T (F7, Wi —1 X[Oe DD {U (Fy, Ve 1) X [0 ]}
DT F,UFEC™D, %) X[0 DS (U F,, TEFE ™, %)) X [0:]}
D UFO,%) X [0, ]
Hence (17) holds for i =¢. This completes the induction step. [

ExaMPLE. Let F\,....Fgr: FT*XF5 - F7 be blockciphers and F=Fgp - - - F,|. A
sequence of linear factors for F, as introduced in [2], 1s a tuple of linear map-
plllgS (Co,cl,...,CR,D) SUChH that NC(),...,CR have domamn F%, D has domain
F5, and there are mappings F,...,Fg with

It 1s easy to check that the spaces °V,=ker(C;)Xker(D) and °l;=ker(C))
(i =0,...,R) satisfy (14). Hence if “V=ker(Cy) X ker(D) and B = (Cp, then (‘V,B)
1S a linear structure of F that 1s recursive over Fy,..., Fg.

5. LINEAR STRUCTURES IN DES
In this section we first give a rough description of the NI

) S-version of DES.
[hen we modify DES into a form that can be analysed more conveniently, and
describe the recursive linear structures of the modified DES. For each func-
tion o: {l,..,v}—>{l,..,u}, we define the bitmap P,:F;—>F; by
P(xy - Xx)=Xgq) " * " Xow) fOor x1 - - - x,€F4. DES is built up from the bit-
maps

IP = P, : F$* — F$*, where o is a pern

utation on {1, ... ,64};
P = P, : F3 —F3*, where o, is a permutation on {1, ...,32};
E = P,:F3* >F3®, where o3: {1, ...,48} = {1,...,32} has the property

that sixteen integers among 1,...,32 have two co-images,

while the other sixteen have only one co-1mage;
PC1 = P, : F$* > F3°, where o4 is injective;
PC2 = P, : F3* - F3°, where os is an injective function that maps {1,...,24)}

into {1,...,28) and {25,...,48} into {29,...,56};
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C = g, * Fgé —')'IFSG, where O¢ 1s the

28-cycles (1,2, . . .,27,28)(29,30, . . . ,55,56);

m the so-called S-boxes S;,...,Sg: F§ —F3. FEach S-box S j 18 con-
ructed in such a way that for any fixed values of the first and the sixth in
bit, S j acts as a permutation on the set of sixteen combinations of the remain
ing four input bits. For the precise definitions of o,...,0¢ and the S-boxes we
refer to [13]. Define S: F3° -F3° by S(xi,...,Xs)=(SX1,...,SgXg). In what
length 64; h
Xg,...,X17 €EF3* recursively by

X;+1 = X;_1 +PoS{EX, fori=1,...,16:

here w(1),...,w(16) is an increasing sequence of integers. Then the ciphertext

c¢= DES (p,k) is given by

¢ = IP 7 (xy9,%56).

. We now describe DES
k’=PC1(k) and define

It 15 easy to see that DES™' is the same as DES, except that the recurrence is
applied in the reverse order; hence we get DES™! by replacing w(i) by
«(17—i) n the above description. Note that the ciphertext depends only on
the 56-bit key PC1(k). Further, it seems that the mappings /P and PC1 do
not contribute anything to the strength of DES.

We now describe a slightly modified version of DES. Let
A {L,...,32}—{1,...,48} be the function for which EoP=P,, and define the
function &: {1,...,48}—(1,..,56} by 8(i)=i for 1<<i<24 and &(i)=i +4 for
25<<i<<48. Note that 25,...,28 and 53,....56 are not contained in the range of
0. There exists a permutation a on {1,...,56) such that permutes 1,...,28 and
29,...,56 and PC2=P;,. Define the permutation k on {L,...,56} by
P,=P,°oCoP;'. Then « is the product of two cyclic permutations on
{1,..,28} and {29,...,56}, respectively. Thus, for each integer i we have

PC2:C' =Pgyy. In the sequel, elements of F§* are denoted by pairs (p,q) with

qeF3’. Fori=1,..,16 we define the blockcipher Fj: F§* XF3¢ —F§* by
q, p+ S (Prq+ Pse0k)).

For any pair of integers S,T with 1<S<T<16 we put

DESgr = Fr - - - F.

DESsr can be considered as the composition of rounds S up to 7 of DES.

Defining the map 6 on F3* by 8(p,9)=(q,p), we infer that F; !(p,q,k) =
0F;(q,p,k) for each i. Therefore
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NBS-version of DES 1n [13] 1s expressed 1in terms of DES | ¢ by

com ple emmwn
1dent1ty, then (‘V ) 1S a linear stn cmre of F;,. Itis easy m see that (“J’

) 1S

ructure of each blockcipher DESgy, and that this linear struc-
LFr. The com nentation pmpeny 1s also a recur-
KCi1t . of at most six consecuﬂve rounds of DES mugh
have recursive linear structures other than the con plementation property. |
instance, DEs, 5 has the pmpeny that for each plaintext p = pp,...pes, key
K = kl k 56, dll COITrespon (1]

_. g ciphertext ¢=DES; 7(p,K)=c...ce4 (with
Pis ki, c;€lF,), a simultaneous cha
bits ¢s,c¢,¢7,¢8,€13,C14,C15,C16 Of C.

ge of psy and k4 does not affect the eight

[he next theorem states that product

ciphers, consisting of seven or more consecutive rounds of DES, do not have

any non-trivial recursive linear structure other than the complementation pro-
perty.

[HEOREM 1. Let S, T be integers with 1<S<<T<16 and T>S +6 and let YV
be a subspace of F§* XF3° that is not equal to [(0g4,0

is a linear structure of DESST that is recursive over Fs,.. FT, or zf (CVB) Is a
linear structure of DESg7 that is recursive over F1 ' .. Fg 1, then B is trivial.

In the next section, we shall derive T]
‘DES-like’ ciphers.

eorem 1 from a more general result on

6. LINEAR STRUCTURES IN DES-LIKE CIPHERS

In this section we introduce DES-like ciphers, which are product ciphers with
a similar structure as DES. We investigate the recursive linear structures of
these DES-like ciphers. The class of DES-like ciphers contains, among others,
the blockciphers DESgr introduced in the previous section.

Let m,k,[,n,m,,n,,R be positive mtegers with m = 21m1 and n=In,. Ele-
ments of FJ are often denoted by (p,q), where p,qeF#”. Whenever con-
venient, we write elements of [F3 M as (qy,...,q) with q; € F5' for j=1,..,] and
elements of F} as I-tuples of elements of F;'. A DES-like cipher with message
space F% and key space F5 is a product cipher

F = FrFp_y - Fy, (13)
whose rounds F;(i =1,...,R) are defined by

Fi(p,q.k)=(q
Here the mapping S: F§ —F%™ is given by

(19)

S(Xl, . . ,x;)m(Slxl,...,Slx,) for X1, o o o ,X;E[Fz )

where S;i.....S;: F3' —>F7"' are certain non-linear mappings (the S-boxes);
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L: B2':‘2 m_s H—";}_’ 1S a lin map geces R - I é — Fﬁ are linear map 1
such that for i =1,...,R, the linear mapping J;: F7 X F5 — Fj, given by

Lherefore 1nverses of DES-like ciphers are also DES-like ciphers, except that
the two halves of the plaintext and ciphertext have to be interchanged.

Linear structures in the rounds F; can be described in terms of linear struc-
tures in the S-boxes. We remark that searching for the linear structures in the
S-boxes is feasible when the input size n, of the S-boxes is small. In that case
it 1s also feasible to find the linear structures in the rounds. For each j in
{1,..,{} and each subspace U of F3' we define the subspace of F3"

UGS, = & [S;(x+u)+S;(x)+S;(w)+S;(0,,)]

xefF,!

el

Similarly as in Remark 3 of Section 2, it follows that any pair (2, B), where AL
is a subspace of F3' and B is a linear mapping on F75", is a linear structure of
5; 1t and only if U(S;,U) Cker(B); (UB) is said to be trivial if U= or if

B 1s trivial.

7—F3' be the j-th projection given by p;(xy,....x)=x,. If
5 18 an input to some round F; then p Ji(p,q,K) 1s the part of
that mput gomng into S-box S;. In the lemma below, elements of F5' are writ-
ten as (p,q;,...,q;), with peF o and q,...,q

MMA 4. Let ie{l,. R} and suppose that F; is given by (19). Further, let ¥
be a subspace of F3 XF5. Then

UL V)= 0%m ] X{US 1,01 Ji(M)X U (S 2,02J:(N) X - - - XU(S, 0 Ji(V)}. (20)

. Denote the space on the nght -hand side of (20) by Z. We first prove
that U(F,,) C% To this end it 1s sufficient to prove that each vector
) & [F i >< F can be wntten as | oryr s D] geces S 1) where
S; € U (S ;-0 Ji(CV)) for j=1,...,I. But this follows at once from the deﬁnjtion of
F; and the fact that S(x)ﬁ(Sl P1(X),...,3:0/(x)): we have

(21)
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WJ O " ’ 0 )) + S _] p _/ J i l . U ) + S ] Q _/ J i ( D, Q 0

, ) ) _+_ Sj ( ' | )

forj'""“l i

ve now prove that ZC U(F;,V). It obviously suffices to prove that for each
tin {1,..,/} we have

where the space U(S,, p,J (*V)) 1s preceded by r — 1 spaces [0,,,] and followed
by / —1t spaces [0,, ]. In order to prove (22), it is sufficient to show that for
each 7 {1,,[ u n p,J;(Y) and x In [Fgl, U(F;,"V) contains (0y,,,¥1,....¥)),
where y, = S,(x+u)+S;(x)+S,(u)+S:(0,, ), and y;=0,, for j54¢. Fix ¢, and

for each u 1n p ,J (C\f) and x in F5', choo se (Pu»Qu, K from V such that
s 13 posslble since we assumed that J; 18
By (21), U (F;,V) comains the vector

u ) + E ( .

Surj ecuve

— ' 15 -« - -« 5 Y/ )]3
where
+35,0Ji(Px-q

for j =1,..,2. But 1t 1s easy to check that y,=S j(X+U)+Sj(x)+ Si(u)+S;((
' [his completes the proof of Lemma 4. [

In the lemma below we show that each DES-like cipher has a recursive linear
structure comparable to the complementation property of DES. Let

" f OT 311 Odd l Hl { 1 JRERL R } }

0, for all even i in {1,..,R}

(note that the equations contain q, for odd i and py for even i). Cr 1s called
the complementation space of F. Then we have:

LEMMA 5. Let F be the DES-like cipher defined by (18) and (19), and let B be
the identity on F5'. Then (Cr,B) is a linear structure of F, which is recursive over
Fi,...,Fg.

ProoOF. Let U; =[0,,] for O<<i<<R and
V;=Cr if 0<i<<R, i even;

5

From Lemma 2 we infer that for every subspace C\f:t@l[

q:,Kk,)] of F3' X F5
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we have

T(F, V) = { él [(q:,p +S(Lg, +Kk)+S5(0,)]}® UF,V). (23)

a 4 and the fact that °V,_, Cker(J;) for
,CUg satisfy the relations (14) in
a 5. L

Using this fact together with Lemn
1 =1,..,R, 1t follows that ,...,Vz, Up,..
Lemma 3. Since Yy =Cr and UWg =[0,,] this proves Lemn

Let F be defined by (18) and (19). To F we associate an error propagation map
Dp, which maps every [tuple (%;,...,%;) of subspaces of F3"' to the /-tuple
(%Y,...,%,) of subspaces of F;"' for which

Y =U(S;,p;L(%; X - -+ X%)) for j=1,...,1

Any change in the plaintext or key affects in some way the outputs of the S-
boxes after the first round. The effects on the outputs of the S-boxes pro-
pagate in the second round, and result in certain effects on the outputs of the
S>-boxes after the second round. Continuing in this way, the outputs of the S-
boxes after each round are affected. Informally speaking, Dr describes, how
the effects on the outputs of the S-boxes after some round propagate in the
next round (the so-called error propagation in one round). Suppose that the
spaces %X;,...,%; describe the effects on the outputs of S-boxes S4,...,S/, respec-
tively, after the i-th round, say. Due to the linear mapping L, the effect on the
output of 5-box S; causes some effect on the inputs of several S-boxes in the
(i + 1)-th round. The total effect on the input of S-box §;, say, in round i +1,
caused by the effects on the outputs of all S-boxes in round i, can be described
by the space p,L(%X; X - - - X%,). Thus, the effect on the output of S, after
the (/ +1)-th round is described by the space %,. Intuitively speaking, if the
spaces %Y, are larger, then the error propagation in one round is stronger. D
(Dr 1terated i times) describes the error propagation in i consecutive rounds.
For F to be secure it is desirable that there is a number P <R such that

Df‘(éxla-..,%)“#'(ng‘,...,ﬂ:'zn‘ (24)

1

If P 1s the smallest integer for which (24) holds, then F is said to have optimal
error propagation after P rounds. It seems that a good design criterion for a
DES-like cipher is to make the number of rounds after which F has optimal
error propagation as small as possible. For instance, this can be achieved by
choosing S-boxes without non-trivial linear structures and choosing L in a
careful way. It is easy to see that (24) holds if and only if
DH(%,,...,%,)) = (Fy',..,F3") for every tuple of spaces (%;,...,%,), for which
exactly one space is generated by a single non-zero vector, while the other
spaces are [0, ]. Hence in order to find the smallest P for which (24) holds,

one merely has to compute D% (i =1,2,...) for /(2™ — 1) tuples (%;,...,%;). This
s feasible if /, m, and n, are small.

It also seems that another good design criterion for the DES-like cipher F

for all SUbSpaCeS ?X«], « . ey % of [Fyznl with at least one # :

nt,
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given by (18) and (19) is to choose the mappings L and
truncations of the I mpher after a few rounds have no larger comple-
mentation space than the DES-like cipher itself. We say that F has no exira
complementation after Q rounds if Q is the smallest integer for which the space

{ , for all even r<Q

Y |
n tor all odd 1<
1s equal to the complementation space Cr. Provided that m, k and n are not
too large, computing Q is feasible.
Below we give a sufficient condition for a DES-like cipher to have no non-

trivial recursive linear structures other than that given in Lemma 5.

Kg such that

|HEOREM 2. Let F be the DES-like cipher given by (18) and (19) and suppose
that the following three conditions are satisfied:

1)  U(S;,W~[0,,, ] for every subspace AL of F5' with UF4[0 ) 1

(1) F has 0ptimal error propagation after P rounds and no extra complementa-
tion after Q rounds,

(1) R>P + Q.

Then for every linear structure (“V,B) that is recursive over F,,...Fr and for

which V' is not contained in Cr, the mapping B is trivial.

PROOF. Let V,..., Vg, Up,...,Wr be a sequence of linear spaces satisfying the
conditions of (14) (cf. Lemma 3) such that Y is not contained in Cr. We have
to prove that Ugx =F%. To this end, we need two lemmas.

LEMMA 6. Let 1<i<<R — 1 and suppose that U; D[0,,,]XX; X - - - XX, where
Kise.., Xy are subspaces of F5'. Then US; 1| D0y, ] X Yy X « -+ XY, where

(%, ...,%9)=Dr(%, ...,%).

PROOF. (14) implies that GM; +1 2 U (E 41 ,6215} X
this implies Lemma 6. [

]). Together with Lemma 4

LEMMA 7. There is an i with 1<i<<Q such that W; D0y, ] XX X - -+ XX,
where °X,,...,%X; are subspaces of F3' of which at least one is 5= [0

PROOF. Let i be the smallest integer for which there is a (py,qo.ko)e Y such
that either Lpy, +K;ky40,, and i even, or Lgy +K:ky%40, and i odd. Then
I<i<@. By arguments similar to those in the proof of Lemma 5, one can
show that

> (Po>Go,ko)eVp } for 1=<<r<<i and 7 odd. (23)

{ VDY for 1<zr<i and r even,

Hence J;(Vi-1)7 [0,]. Put % =U(S;,p;J;(Vi-1)) for j :1 .,I. By condition
(1) of Theorem 2, at Eeast one of the spaces X; 1s 5= [0, ], and by (14) and
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'his proves

proof of Theorem 2. By Lemma 7 there is

Wi [0 ] X Kg X - - = XK,

where X;,...,%; are subspaces of F5' of which at least one is #[0,, . By
Lemma 6 we have for ¢t =1,2,...,

GM}-FI;[%m]XGyl X oo X@l with (@19 - . . :Gyl) — DtF(%la - . ﬁ%)’

so that in particular,

Since F has optimal error propagation after some number of rounds, there are
subspaces %,...,%& of F,' such that Dg(%,....,%) = (F7",...,F5"). Hence
Dp(F3',...,F3") = (F7",...,F3"). Together with (14), Lemma 2 (or (23)) and
Lemma 6 this imphies that

U, = F5 for s>i+P.

But by condition (1i1) we have R>P + Q=i +P. We conclude that U, =F%.
[

We now prove Theorem 1. The same notation is used as in Section 5.

PROOF OF THEOREM 1. Let §,T be integers with 1<S<T<16 and T=S +6.
It 1s easy to check that DESgr is a DES-like cipher with parameters m =64,
k=56, n=48, m,=4, ny=6, | =8, and R=T—S +1. Further, L=P, and
K; =Pgei+s-» for i=1,..,R. The only data we need in the proof are the func-
tions A and k, the integers w(l),...,w(16) and the linear structures in the S-
boxes of DES, which are given in an appendix at the end of this paper. A, k

and w(1),...,w(16) are such that for all S and T with 1<S<T=<16 and
I'=S§ +6 and all i =4, the space

64 56 Pypo + Pge+s-nkg =048 1f i even
ef T (p03q03k0)EF2 X'Fz ) PAQO +P8K«ii+$-l)k0 :048 if 7 odd

1s equal to [(144,15¢)]. Hence DES¢r has no extra complementation after Q
rounds, for some integer 0 <<4. By investigating A and the linear structures in
the S-boxes, it can be shown that each blockcipher DES¢; with T=S +6 has
optimal error propagation after P:=2 rounds. From the list of linear struc-
tures 1n the appendix it can be concluded that condition (i) of Theorem 2 also
holds. Finally, R=7>P + Q. It can be verified in precisely the same way
that DESg7 is also a DES-like cipher satisfying the conditions of Theorem 2,

provided that we interchange the two halves of its plaintext and ciphertext.
Now Theorem 1 follows at once from Theorem 2. [
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0, 1V] suggesie the following way to break DES, which
O an a € mpher F: mod 1fy the S—-b oxes of F
h the modified S-boxes, 18 easy
ak. If the mod h that the output S(x) 1s
an ged for only a few inputs X, then F and F” give the same ciphertexts for a
gligible fraction of pan*s of plaintexts and keys. For these plaintexts
and keys, the key 1n F can be found by searcl for the key in F’. Some of
the potential possi bilit; hi already discussed 1n [2, 2.1].
rom Ehe investigations in Section 6 it follows that recursive linear struc-
n DES-like ciphers are built up from linear structures in the S-boxes.
[ her Hellman et al.’s attack described above might work if some of the
S-boxes of a l like cipher have small distances to certain linear structures.
Here the distance of an S-box to a particular linear structure (*V,B) 1s the
minimal number of outputs of that S-box that must be changed to obtain an
S-box with that linear structure (*V,B).

Ideally, one would choose the S-boxes such that they have large distances to
all linear structures. A necessary (but probably not sufficient) condition for an
S-box S: F}'—F3" to satisfy this, is that for each xy€F3' and for each linear
mapping B: F5'—[F,, the fraction of xeF;' for which BS(x+x)=BS(x) is
close to . For if BS(x+x9)=BS(x) for exactly f inputs x, then S has dis-
tance 2min(f,2"' —f) to the linear structure ([xp],B). It is not known if S-
boxes exist with large distances to all linear structures, or 1if 1t 1s feasible to
construct such S-boxes. However, not all linear structures in the S-boxes of a
DES-like cipher will result in non-trivial linear structures of the whole cipher.
Therefore, it suffices to find out which linear structures in the S-boxes are
dangerous, in the sense that they would cause recursive linear structures in the
DES-like cipher, and then choose S-boxes with large distances to only the
dangerous linear structures.

It is known that S-box 4 of DES has non-trivial linear structures (cf. appen-
dix). Further, structures like the so-called 50% and 25% exclusive-ors, found
by HELLMAN. et al. (cf. [10, V]), and the correlation in each S-box between
one of the six inmput bits and the modulo two sum of all four output bits,
discovered independently by SHAMIR [16] and FRANKLIN [9], show that each
S-box of DES has small distances to certain linear structures. However, these
structures have not been proved useful in the cryptanalysis of DES. It 1s yet
unknown (from the open literature), whether the S-boxes in DES have dis-
tances to dangerous linear structures that are small enough to enable a known
or chosen plaintext attack faster than exhaustive key search.
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- we descnbe the spaces U ( ,) for each S-box §; of DES and each
subspace QU of FS$.

U(S;, )= F3 forall j in {1,...,8}
and all subspaces QL of F$ with =4[000000]

with the following exceptions:
U(S4,[000001]) = [1100]D[0011]
U(S4,[101110]) [1010]D[0101]
U(S4,[101111]) [1001][0110]

U(S 4,[0000011[101110]) [1100][1010]D[0011]

]

Description of A
A is given by a 12 X 4-table. The first row contains A(l),...,A(12), the second
row A(13),...,A(24), etc.

25 16 7 20 21 29 21 29 12 28 17 1

17 1 15 23 26 5 26 5 18 31 10 2

10 2 8 24 14 32 14 32 27 3 9 19

9 19 13 30 6 22 6 22 11 4 25 16

Description of x
k is given as a product of two 28-cycles.
( 919 227 14 22 11 26 13 4 25 17 21 38
524 7 16 6 10 20 18 28 12 3 15 23 1)

( 48 54 41 38 47 33 40 42 49 37 30 46 53 34
44 51 35 31 52 39 45 56 50 32 55 43 36 29 )

Table of w(1), . . ., «(16)
w(1), . . .,w(16) are given from the left to the nght.

1 2 4 6 8 12 14 15 17 19 21 23 25 27 28

4]



